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The central problem

How does the behavior of an incompressible fluid at low viscosity compare
to the behavior of an inviscid fluid in the presence of a boundary?

The central problem is when the fluid does not move on the boundary.

The behavior of the fluid in a layer near the boundary is typically the
focus.

The production of vorticity on the boundary due to the tangential
derivative of the pressure can lead to separation of the boundary
layer, massively complicating any analysis.

We first briefly consider situations in which the central problem can be
solved.
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Special initial data special geometry

Ex1: A disk with radially symmetric initial vorticity. The solution to the
Euler equations is stationary, and the nonlinear term for both the
Navier-Stokes and Euler equations vanishes.

Ex2: Plane parallel channel flow, in which the velocity field is everywhere
parallel to the 3D periodic channel’s walls. Initial velocity
u0 = (v1(z), v2(x , z), 0). The nonlinear terms have only tangential
derivatives.

Ex3: Flow in a periodic circular pipe (a solid flat torus). Initial velocity,
u0 = vθ(r)eθ + vz(r , θ)ez + 0er . The nonlinear terms have only
tangential derivatives.

In each case:

The symmetry persists in time.

The nonlinearity has only tangential derivatives of the velocity.

The tangential derivative of the pressure is zero.
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Why does the vanishing viscosity limit hold?
Point of view 1:

The weakened nonlinearity allows one to apply any of the equivalent
conditions of Kato, for instance, the vanishing of

ν

∫ t

0
‖∇τ uτ ‖2

L2(Γδ(ν))

in a boundary layer of width δ(ν) > Cν, a la Temam and Wang 1998
and Wang 2001.

Point of view 2:

The vanishing of the tangential derivative of the pressure prevents
vorticity production on the boundary, a la Lighthill 1963, allowing
convergence.
This is in the spirit of Temam and Wang 1998, who show that as long
as ‖∇p · τ‖L2(Γ) does not blow up too fast as ν → 0, the vanishing
viscosity limit will hold (with a bound on the rate of convergence).

Point of view 3: Various direct arguments, especially for Ex1.
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Focus changes

So in these three examples the focus shifts to how strong the convergence
is, how fast the rate of convergence is, how weak the initial data can be,
and how irregular the forcing or rotation of the boundary can be.

And, what is happening in the boundary layer, which, though weakened, is
still of great interest.

I do not know the complete history of these problems, but:

Ex1: Radially symmetric initial vorticity in a disk: Matsui 1994, Bona and
Wu 2002, Wang 2001, Nussenzveig Lopes, Lopes Filho, and
Mazzucato 2008 and with the addition of Taylor 2008.

Ex2: Plane parallel channel flow: Wang 2001, Mazzucato and Taylor 2008,
Mazzucato, Niu, and Wang 2011.

Ex3: Circular pipe flow: Wang 2001, Mazzucato and Taylor 2011, Han,
Mazzucato, Niu, and Wang 2011 (preprint).
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Lighthill’s condition (1963)

The Navier-Stokes equations are

∂tu + u · ∇u +∇p = ν∆u, div u = 0.

If we impose u = 0 on the boundary, then on a 2D boundary,

∇p · τ = ν∆u · τ = ν∇⊥ω(u) · τ = −ν∇ω(u) · n,

where (n, τ ) are the unit normal, tangent vectors, and ω(u) is the vorticity
(scalar curl) of u. Thus,

∇ω(u) · n = −1

ν
∇p · τ .

This says that the production of vorticity is controlled by the tangential
derivative of the pressure on the boundary.
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A fourth example (2D)
A confined eddy is a compactly supported, radially symmetric vorticity
having total mass zero.

Such eddies were studied in the whole plane by Nussenzveig Lopes, Lopes
Filho, and Zheng 1999, where it is observed that:

The vorticity and velocity vanish outside the eddy.
They are stationary solutions to the Euler equations.
This is true as well for a superposition of such eddies.

Hence, placed inside a bounded domain, a superposition is still a
stationary solution to the Euler equations and one that vanishes on the
boundary. This makes it is easy to establish the vanishing viscosity
limit making the most basic of energy arguments.

The solution to the Navier-Stokes equations immediately breaks the
symmetry of the initial data, a full nonlinearity is established, vorticity
accumulates on the boundary, and a boundary layer forms. Yet the
vanishing viscosity limit holds. This would be an interesting example to
explore, perhaps starting by investigating the Kato-like conditions.
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Different boundary conditions
Another change to the central problem is to use more amenable boundary
conditions. I will speak of generalized Navier boundary conditions:

u · n = 0, [Su n]tan +A u = 0,

where Su = (∇u + (∇u)T )/2 is the symmetric gradient and A is a type
(1, 1) tensor on the boundary. A maps a tangent field on the boundary,
such as u, to a tangent field on the boundary.

Special cases:

1 A = αI for α > 0, reduces to Navier boundary conditions. Here, α is
the friction parameter and the slip on the boundary is proportional to
the tangential component of the stress.

2 When A = the shape operator (Weingarten map) we get

u · n = 0, (curl u)× n = 0.
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Navier boundary conditions

Navier boundary conditions are variously called Navier friction, Navier slip,
or simply Navier, or simply slip, boundary conditions (other names have
been used as well). They were Navier’s original boundary conditions.

There has been intermittent interest in Navier BCs over the years, but:

Revival of active interest in the mathematical community working on
the vanishing viscosity limit started with the paper of Clopeau,
Mikelić, and Robert 1998, which gives a vanishing viscosity result in
two dimensions.

The work of J-M Coron 1995 on the controllability of the 2D
Navier-Stokes equations with Navier boundary conditions, initiated
interest in these boundary conditions in the PDE control theory
community.
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Three papers

By now there is a fairly substantial mathematical literature on the subject,
but three papers are of particular concern to us here:

1 Iftimie and Planas 2006: Establishes the vanishing viscosity limit in
3D for the first time with a rate of convergence of order ν1/2.

2 Iftimie and Sueur 2010: Performs a Prandtl-like boundary layer
analysis and establishes the optimal rate of convergence of order ν3/4.

3 Masmoudi and Rousset 2010 (preprint): Obtains bounds in conormal
Sobolev spaces uniformly in viscosity and convergence uniform in time
and space (without a bound on the rate of convergence).

Jim Kelliher (UC Riverside) Boundary Layer Navier BCs 10/16 14 November 2011 10 / 16



Iftimie and Sueur 2010

Let:

uν , ν > 0, be a (strong) solution to the Navier-Stokes equations

u0 be the solution to the Euler equations

fixed time of existence, T > 0, independent of ν

Iftimie and Sueur construct a corrector, which we will call θ, so that∥∥uε − u0 − θ
∥∥
L∞(0,T ;L2)

≤ Cν,
∥∥uε − u0 − θ

∥∥
L2(0,T ;H1)

≤ Cν
1
2 .

Their corrector is of the form

θ(t, x) = ν
1
2 v(t, x , ν−

1
2ϕ(x)),

where ϕ(x) is a smoothed distance from the boundary.
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Prandtl-like equation for v
The boundary “profile” satisfies the equation:

∂tv − ∂2
z v +

u0 · n
ϕ(x)

z∂zv +
[
u0 · ∇v + v · ∇u0

]
tan

= 0

with boundary conditions (at z = 0)

∂zv(t, x , 0)− [∂zv(t, x , 0) · n] n = −2
[
Su0(t, x)n + αu0(t, x)

]
tan
,

v · n = 0.

Additional correctors are needed in analysis, but discarded at the end:

1 div v is order ν1/2; to reduce the impact of this, an additional, order-ν
corrector, w , is added. But because of its smaller order, only the
first-order corrector, v , is needed to obtain the convergence rates.

2 The normal component of u0 · ∇v + v · ∇u0 is not dealt with by v .
To handle it, a pressure corrector of order ν is included in the
analysis. Like w , it is not needed to obtain the convergence rates.
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Our boundary layer corrector
In our approach we avoid these complications, following an approach that
is more in the tradition of Temam and Wang, and which uses an explicit
corrector. But we pay a price for simplicity: our corrected convergence
rate in the vanishing viscosity limit is only Cν3/4, the same as for the
optimal uncorrected rate.

Tuesday at 11:30 I will discuss our boundary layer corrector. But main
points:

It is divergence-free.

It is explicit and decays exponentially away from the boundary.

Because it is explicit, it is easy to obtain estimates on higher-order
derivatives of our corrector; this is critical for obtaining uniform in
time and space convergence rates.

It is most easily expressed and interpreted in special coordinates I will
talk about.

Gung-Min will speak a bit on these same coordinates in his talk,
which comes just before mine.
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Masmoudi and Rousset
The philosophy in Masmoudi and Rousset 2010 (opinion is entering here)
is that since in the Prandtl theory it is derivatives in the normal direction
that are expected to be the largest, the appropriate space to work in is one
that dampens down these derivatives.

The conormal space, Hm
co , is essentially the Sobolev space, Hm, with only

normal derivatives weighted by a smoothed distance from the boundary.

Masmoudi and Rousset prove existence and uniqueness of solutions to the
Navier-Stokes equations with Navier boundary conditions for initial
velocity in Hm

co , m > 6, for a finite time, T > 0, depending on the initial
velocity but independent of small viscosity. They produce estimates in Hm

co

independent of small viscosity.

They also prove convergence of uν to u0 uniform in time and space,
though without a bound on the rate of convergence.

I am suppressing a number of technical details here.
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Uniform convergence

To obtain uniform-in-time-and-space convergence of the uncorrected or
corrected difference, we use the uniform-in-viscosity estimates in
Masmoudi and Rousset 2010 in the conormal Sobolev space, Hm

co , and the
following anistropic Agmons inequality:

Theorem (Gie, K)

Let Ω be a bounded domain in R3 with Cm+1-boundary, m ≥ 3, and let Γa

be the tubular neighborhood of fixed width a > 0 interior to Ω. Suppose
that f and ∇f lie in the space Hm

co(Ω). Then

‖f ‖L∞(Γa) �m,a ‖f ‖
1
2
− 1

2m

L2(Ω)
‖f ‖

1
2m

Hm
co(Ω)

[
‖f ‖L2(Ω) + ‖∇f ‖Hm

co(Ω)

] 1
2
,

‖f ‖L∞(Ω\Γa) �m,a ‖f ‖
1− 3

2m

L2(Ω)
‖f ‖

3
2m

Hm
co(Ω) .

Jim Kelliher (UC Riverside) Boundary Layer Navier BCs 15/16 14 November 2011 15 / 16



What we prove

Theorem (Gie, K)

Assume that u0 ∈ H ∩ Hm(Ω) and Γ is Cm+2 for m ≥ 5. Then∥∥uν − u0
∥∥
L∞(0,T ;L2(Ω))

≤ κν
3
4 ,∥∥uν − u0

∥∥
L2(0,T ;H1(Ω))

≤ κν
1
4 ,

for a constant κ = κ(T , α, u0, f ), α = ‖A‖Cm(Γ). If m > 6 then

∥∥uν − u0
∥∥
L∞([0,T ]×Γa)

≤ κν
3
8
− 3

8(m−1) ,∥∥uν − u0
∥∥
L∞([0,T ]×Ω\Γa)

≤ κν
3
4
− 9

8m ,

where now κ = κ(T , α,m, a, u0, f ) and Γa is the interior tubular
neighborhood of Ω with fixed width a > 0.
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